Advertisements
Advertisements
Question
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Solution
`(sin^2 theta + 1/(1+ tan^2 theta ))`
= `( sin^2 theta + 1/(sec^2 theta))`
=`( sin^2 theta + cos^2 theta)`
=1
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If tanθ `= 3/4` then find the value of secθ.
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If 3 sin θ = 4 cos θ, then sec θ = ?
If tan α + cot α = 2, then tan20α + cot20α = ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ