Advertisements
Advertisements
Question
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Solution
LHS = `(cosecθ)/(tanθ + cotθ)`
= `(1/sinθ)/(sinθ/cosθ + cosθ/sinθ)`
= `(1/sinθ)/((sin^2θ + cos^2θ)/(cosθsinθ))` = `(1/sinθ)/(1/(cosθsinθ)`
= `1/sinθ xx (cosθsinθ)/1 = cosθ`
APPEARS IN
RELATED QUESTIONS
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`