Advertisements
Advertisements
Question
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Sum
Solution
LHS = sin( 90° - θ ) sin θ cot θ
= cos θ . sin θ . `cos θ/sin θ`
= cos2θ
= RHS
Hence proved.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
tan θ cosec2 θ – tan θ is equal to
Choose the correct alternative:
sec 60° = ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.