Advertisements
Advertisements
प्रश्न
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
उत्तर
Given:
`sec^2θ {(1+sinθ) (1-sin θ)}=k`
⇒ `sec^2θ {(1+sinθ) (1-sin θ)}=k`
⇒` Sec^2θ {1+sinθ}=K`
⇒ `sec^2θ cos^2θ=k`
⇒` 1/cos^2θ xx cos ^2 θ=k`
⇒ `1=k`
⇒` k=1`
Hence, the value of k is 1.
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`(1 + cot^2 theta ) sin^2 theta =1`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1