मराठी

If Sec2 θ (1 + Sin θ) (1 − Sin θ) = K, Then Find the Value of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.

बेरीज

उत्तर

Given:

`sec^2θ {(1+sinθ) (1-sin θ)}=k` 

⇒ `sec^2θ {(1+sinθ) (1-sin θ)}=k`  

⇒` Sec^2θ {1+sinθ}=K` 

⇒ `sec^2θ  cos^2θ=k` 

⇒` 1/cos^2θ xx cos ^2 θ=k` 

⇒ `1=k`

⇒` k=1` 

Hence, the value of k is 1. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 19 | पृष्ठ ५५

संबंधित प्रश्‍न

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


`(1 + cot^2 theta ) sin^2 theta =1`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×