Advertisements
Advertisements
प्रश्न
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
उत्तर
We Know , `(sinA + cosA)^2 = sin^2A + cos^2A + 2sinA.cosA`
Given , (sinA + cosA) = `sqrt(2)`
⇒ 2 = 1 + 2sinA.cosA
⇒ 2sinA.cosA = 1
⇒ sinA.cosA = `1/2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
sec4 A − sec2 A is equal to
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`