Advertisements
Advertisements
Question
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Solution
LHS = `(rsinAcosB)^2 + (rsinAsinB)^2 + (rcosA)^2`
⇒ `r^2sin^2Acos^2B + r^2sin^2Asin^2B + r^2cos^2A`
⇒ `r^2sin^2A(cos^2B + sin^2B) + r^2cos^2A`
⇒ `r^2(sin^2A + cos^2A) = r^2` = RHS
APPEARS IN
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Choose the correct alternative:
sec 60° = ?
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`