Advertisements
Advertisements
Question
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Solution
L.H.S = `sqrt(sec^2 theta + "cosec"^2 theta)`
= `sqrt(1/cos^2 theta + 1/(sin^2 theta))` ...`[∵ sec^2 theta = 1/(cos^2 theta) "and" "cosec"^2 theta = 1/(sin^2 theta)]`
= `sqrt((sin^2 theta + cos^2 theta)/(sin^2 theta * cos^2 theta))`
= `sqrt(1/(sin^2 theta * cos^2 theta))` ...[∵ sin2θ + cos2θ = 1]
= `1/(sin theta * cos theta)`
= `(sin^2 theta + cos^2 theta)/(sin theta * cos theta)` ...[∵ 1 = sin2θ + cos2θ]
= `(sin^2 theta)/(sin theta * cos theta) + (cos^2 theta)/(sin theta * cos theta)`
= `sintheta/costheta + cos theta/sintheta` ...`[∵ tan theta = sin theta/cos theta "and" cot theta = costheta/sin theta]`
= tan θ + cot θ
= R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If `sin theta = x , " write the value of cot "theta .`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
(1 + sin A)(1 – sin A) is equal to ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0