Advertisements
Advertisements
Question
The angle of elevation of the top of a tower from certain point is 30°. If the observer moves 20 metres towards the tower, the angle of elevation of the top increases by 15°. Find the height of the tower.
Solution
Let the height of the tower be h.
Also, SR = x m,
Given that, QS = 20 m
`sqrt("PQR")` = 30°
And `sqrt("PSR") = sqrt("PQR") + 15^circ`
= 30° + 15°
= 45°
Now, In ∆PSR,
tan 45° = `"PR"/"SR" = "h"/x`
⇒ `1 = "h"/x` ...[∵ tan 45° = 1]
⇒ x = h ...(i)
Now, In ∆PQR
tan 30° = `"PR"/"QR" = "PR"/("QS" + "SR")`
⇒ tan 30° = `"h"/(20 + x)`
⇒ 20 + x = `"h"/(tan 30^circ) = "h"/(1/sqrt(3))`
⇒ 20 + x = `"h"sqrt(3)`
⇒ 20 + h = `"h"sqrt(3)` ...[From (i)]
⇒ 20 = `"h"sqrt(3) - "h"`
⇒ `"h"(sqrt(3) - 1)` = 20
⇒ h = `20/(sqrt(3) - 1) * (sqrt(3) + 1)/(sqrt(3) + 1)` ...[By rationalisation]
⇒ h = `(20(sqrt(3) + 1))/(3 - 1) = (20(sqrt(3) + 1))/2`
⇒ h = `10(sqrt(3) + 1) "m"`
Hence, the required height of tower is `10(sqrt(3) + 1) "m"`.
APPEARS IN
RELATED QUESTIONS
If the angle of elevation of a cloud from a point h metres above a lake is α and the angle of depression of its reflection in the lake is β, prove that the height of the cloud is
`\frac{h(\tan\alpha +\tan \beta )}{\tan \beta -\tan \alpha }`
Two poles of equal heights are standing opposite each other an either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30º, respectively. Find the height of poles and the distance of the point from the poles.
The ratio of the height of a tower and the length of its shadow on the ground is `sqrt3 : 1`. What is the angle of elevation of the sun?
The angle of elevation of a cloud from a point 60 m above the surface of the water of a lake is 30° and the angle of depression of its shadow in water of lake is 60°. Find the height of the cloud from the surface of water
Two poles of equal heights are standing opposite to each other on either side of the road which is 80m wide, From a point P between them on the road, the angle of elevation of the top of one pole is 60 and the angle of depression from the top of another pole at P is 30 . Find the height of each pole and distance of the point P from the poles.
The angles of depression of two ships from the top of a light house are 45° and 30° towards east. If the ships are 100 m apart. the height of the light house is
The height of the vertical pole is \[\sqrt{3}\] times the length of its shadow on the ground, then angle of elevation of the sun at that time is
An electrician has to repair an electric fault on a pole of height 4 m. He needs to reach a point 1.3 m below the top of the pole to undertake the repair work. What should be the length of the ladder that he should use which when inclined at an angle of 60° to the horizontal would enable him to reach the required position?
Two towers A and B are standing some distance apart. From the top of tower A, the angle of depression of the foot of tower B is found to be 30°. From the top of tower B, the angle of depression of the foot of tower A is found to be 60°. If the height of tower B is ‘h’ m then the height of tower A in terms of ‘h’ is ____________ m.
The angle of elevation of the top of a tower is 30°. If the height of the tower is doubled, then the angle of elevation of its top will also be doubled.