मराठी

Prove that cosecsec2θ+cosec2θ=tanθ+cotθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`

बेरीज

उत्तर

L.H.S = `sqrt(sec^2 theta + "cosec"^2 theta)`

= `sqrt(1/cos^2 theta + 1/(sin^2 theta))`  ...`[∵ sec^2 theta = 1/(cos^2 theta) "and"  "cosec"^2 theta = 1/(sin^2 theta)]`

= `sqrt((sin^2 theta + cos^2 theta)/(sin^2 theta * cos^2 theta))`

= `sqrt(1/(sin^2 theta * cos^2 theta))`  ...[∵ sin2θ + cos2θ = 1]

= `1/(sin theta * cos theta)`

= `(sin^2 theta + cos^2 theta)/(sin theta * cos theta)`  ...[∵ 1 = sin2θ + cos2θ]

= `(sin^2 theta)/(sin theta * cos theta) + (cos^2 theta)/(sin theta * cos theta)`

= `sintheta/costheta + cos theta/sintheta`  ...`[∵ tan theta = sin theta/cos theta "and" cot theta = costheta/sin theta]`

= tan θ + cot θ 

= R.H.S

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 2 | पृष्ठ ९९

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


If x = a tan θ and y = b sec θ then


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×