Advertisements
Advertisements
प्रश्न
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
उत्तर
L.H.S = `sqrt(sec^2 theta + "cosec"^2 theta)`
= `sqrt(1/cos^2 theta + 1/(sin^2 theta))` ...`[∵ sec^2 theta = 1/(cos^2 theta) "and" "cosec"^2 theta = 1/(sin^2 theta)]`
= `sqrt((sin^2 theta + cos^2 theta)/(sin^2 theta * cos^2 theta))`
= `sqrt(1/(sin^2 theta * cos^2 theta))` ...[∵ sin2θ + cos2θ = 1]
= `1/(sin theta * cos theta)`
= `(sin^2 theta + cos^2 theta)/(sin theta * cos theta)` ...[∵ 1 = sin2θ + cos2θ]
= `(sin^2 theta)/(sin theta * cos theta) + (cos^2 theta)/(sin theta * cos theta)`
= `sintheta/costheta + cos theta/sintheta` ...`[∵ tan theta = sin theta/cos theta "and" cot theta = costheta/sin theta]`
= tan θ + cot θ
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If x = a tan θ and y = b sec θ then
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B