Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
उत्तर
We have to prove `(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and denominator by `(1 + cos theta)`, we have
`(1 - cos theta)/sin theta = ((1 - cos theta)(1 + cos theta))/(sin theta(1 + cos theta))`
`= (1 - cos^2 theta)/(sin theta(1 + cos theta))`
` = (sin^2 theta)/(sin theta(1 + cos theta))`
`= sin theta/(1 + cos theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If 1 – cos2θ = `1/4`, then θ = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ