Advertisements
Advertisements
प्रश्न
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
उत्तर
L.H.S. = (cosec A – sin A) (sec A – cos A) × sec2 A
= `(1/sinA - sinA)(1/cosA - cosA) xx sec^2A` ...`{∵ cosec theta = 1/sintheta, sectheta = 1/costheta, 1 - sin^2theta = cos^2theta, 1 - cos^2theta = sin^2theta}`
= `((1 - sin^2A)/sinA)((1 - cos^2A)/cosA) 1/(cos^2A)`
= `(cos^2A)/(sinA)*(sin^2A)/(cosA)*1/(cos^2A)`
= `sinA/cosA`
= tan A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0