Advertisements
Advertisements
प्रश्न
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
उत्तर
` (( cosec^2 theta - sec^2 theta))/((cosec^2 theta + sec^2 theta))`
=` ((1+cot^2 theta) -( 1+ tan^2 theta))/((1+ cot^2 theta)+( 1+ tan^2 theta))`
=`((1+ 1/ tan^2 theta)-(1+ tan^2 theta))/((1+ 1/ tan^2 theta)-(1+ tan^2 theta))`
=`((1+ 1/ tan^2 theta-1- tan^2 theta))/((1+ 1/ tan^2 theta +1+ tan^2 theta))`
=` ((1/ tan^2 theta - tan^2 theta ))/((1/ tan^2 theta + tan^2 theta +2))`
=`((sqrt(5)/1)^2 - ( 1/sqrt(5))^2 )/((sqrt(5)/1)^2 + (1/sqrt(5))^2+2)`
=`((5/1+1/5))/((5/1+1/5+2/1))`
=`((24/5))/((36/5))`
=`24/36`
=`2/3`
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
` tan^2 theta - 1/( cos^2 theta )=-1`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ