मराठी

If `Tan Theta = 1/Sqrt(5), "Write the Value Of" (( Cosec^2 Theta - Sec^2 Theta))/(( Cosec^2 Theta - Sec^2 Theta))` - Mathematics

Advertisements
Advertisements

प्रश्न

If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`

उत्तर

   ` (( cosec^2 theta - sec^2 theta))/((cosec^2 theta + sec^2 theta))`

  =` ((1+cot^2 theta) -( 1+ tan^2 theta))/((1+ cot^2 theta)+( 1+ tan^2 theta))`

    =`((1+ 1/ tan^2 theta)-(1+ tan^2 theta))/((1+ 1/ tan^2 theta)-(1+ tan^2 theta))`

     =`((1+ 1/ tan^2 theta-1- tan^2 theta))/((1+ 1/ tan^2 theta +1+ tan^2 theta))`

      =` ((1/ tan^2 theta - tan^2 theta ))/((1/ tan^2 theta + tan^2 theta +2))`

     =`((sqrt(5)/1)^2 - ( 1/sqrt(5))^2 )/((sqrt(5)/1)^2 + (1/sqrt(5))^2+2)`

    =`((5/1+1/5))/((5/1+1/5+2/1))`

    =`((24/5))/((36/5))`

    =`24/36`

     =`2/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 3

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 3 | Q 23

संबंधित प्रश्‍न

Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


` tan^2 theta - 1/( cos^2 theta )=-1`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×