Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
उत्तर
We need to prove `sec^6 theta = tan^6 theta + 3 tan^2 theta sec^2 theta + 1`
Solving the L.H.S, we get
`sec^6 theta = (sec^2 theta)^3`
`= (1 + tan^2 theta)^3`
Further using the identity `(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2` , we get
`(1 + tan^2 theta)^3 = 1 + tan^6 theta + 3(1)^2 (tan^2 theta) + 3(1)(tan^2 theta)^2`
`= 1 + tan^6 theta + 3 tan^2 theta + 3 tan^4 theta`
`= 1 + tan^6 theta + 3 tan^2 theta + 3 tan^4 theta`
`= 1 + tan^6 theta + 3 tan^2 theta (1 + tan^2 theta)`
`= 1 + tan^6 theta + 3 tan^2 theta sec^2 theta` (using `1 + tan^2 theta = sec^2 theta`)
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Choose the correct alternative:
cos 45° = ?
tan θ × `sqrt(1 - sin^2 θ)` is equal to: