मराठी

Prove the Following Trigonometric Identities. Sec6θ = Tan6θ + 3 Tan2θ Sec2θ + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1

उत्तर

We need to prove `sec^6 theta = tan^6 theta + 3 tan^2 theta sec^2 theta + 1`

Solving the L.H.S, we get

`sec^6 theta = (sec^2 theta)^3`

`= (1 + tan^2 theta)^3`

Further using the identity `(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2` , we get

`(1 + tan^2 theta)^3 = 1 + tan^6 theta + 3(1)^2 (tan^2 theta) + 3(1)(tan^2 theta)^2`

`= 1 + tan^6 theta + 3 tan^2 theta + 3 tan^4 theta`

`= 1 + tan^6 theta + 3 tan^2 theta + 3 tan^4 theta`

`= 1 + tan^6 theta + 3 tan^2 theta (1 + tan^2 theta)`

`= 1 + tan^6 theta + 3 tan^2 theta sec^2 theta`   (using `1 + tan^2 theta = sec^2 theta`)

Hence proved.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 31 | पृष्ठ ४४

संबंधित प्रश्‍न

Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Choose the correct alternative:

cos 45° = ?


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×