Advertisements
Advertisements
प्रश्न
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
उत्तर
` (( cosec^2 theta - sec^2 theta))/((cosec^2 theta + sec^2 theta))`
=` ((1+cot^2 theta) -( 1+ tan^2 theta))/((1+ cot^2 theta)+( 1+ tan^2 theta))`
=`((1+ 1/ tan^2 theta)-(1+ tan^2 theta))/((1+ 1/ tan^2 theta)-(1+ tan^2 theta))`
=`((1+ 1/ tan^2 theta-1- tan^2 theta))/((1+ 1/ tan^2 theta +1+ tan^2 theta))`
=` ((1/ tan^2 theta - tan^2 theta ))/((1/ tan^2 theta + tan^2 theta +2))`
=`((sqrt(5)/1)^2 - ( 1/sqrt(5))^2 )/((sqrt(5)/1)^2 + (1/sqrt(5))^2+2)`
=`((5/1+1/5))/((5/1+1/5+2/1))`
=`((24/5))/((36/5))`
=`24/36`
=`2/3`
APPEARS IN
संबंधित प्रश्न
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
If cosA + cos2A = 1, then sin2A + sin4A = 1.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.