हिंदी

If ` Cot A= 4/3 and (A+ B) = 90° ` ,What is the Value of Tan B? - Mathematics

Advertisements
Advertisements

प्रश्न

If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?

उत्तर

We have ,

`cot A = 4/3`

 ⇒ ` cot (90° - B ) = 4/3                (As , A+ B = 90° )`

∴ tanB = `4/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 24

संबंधित प्रश्न

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×