Advertisements
Advertisements
प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
उत्तर
L.H.S. = (sin θ + cos θ)(tan θ + cot θ)
= `(sin theta + cos theta)(sin theta/cos theta + costheta/sin theta)`
= `(sin theta + cos theta)((sin^2 theta + cos^2 theta)/(costhetasin theta))`
= `(sintheta+costheta)xx1/(sinthetacostheta)` ...[∵ sin2θ + cos2θ = 1]
= `(sin theta + cos theta)/(cos theta sin theta)`
= `sin theta/(cos thetasin theta) + cos theta/(cos theta sin theta)`
= `1/cos theta + 1/sin theta`
= `sec theta + cosec theta`
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
1 + cot2θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
(1 – cos2 A) is equal to ______.