मराठी

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.

बेरीज

उत्तर

L.H.S. = (sin θ + cos θ)(tan θ + cot θ)

= `(sin theta + cos theta)(sin theta/cos theta + costheta/sin theta)`

= `(sin theta + cos theta)((sin^2 theta + cos^2 theta)/(costhetasin theta))`

= `(sintheta+costheta)xx1/(sinthetacostheta)`   ...[∵ sin2θ + cos2θ = 1]

= `(sin theta + cos theta)/(cos theta sin theta)`

= `sin theta/(cos thetasin theta) + cos theta/(cos theta sin theta)`

= `1/cos theta + 1/sin theta`

= `sec theta + cosec  theta`

= R.H.S

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Trigonometrical Identities - Exercise 21 (E) [पृष्ठ ३३३]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 21 Trigonometrical Identities
Exercise 21 (E) | Q 15 | पृष्ठ ३३३
आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 52

संबंधित प्रश्‍न

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


Choose the correct alternative:

cos θ. sec θ = ?


Choose the correct alternative:

1 + cot2θ = ? 


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×