मराठी

Prove the Following Trigonometric Identities. Sin2 A Cot2 A + Cos2 A Tan2 A = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1

उत्तर

We have to prove `sin^2 A cot^2 A + cos^2 A tan^2 A = 1`

We know that `sin^2 A + cos^2 A = 1`

So,

`sin^2 A cot^2 A  + cos^2 A tan^2 A = sin^2 A (cos^2 A)/(sin^2 A) + cos^2  A(sin^2 A)/(cos^2 A)`

`= cos^2 A + sin^2 A`

= 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 22 | पृष्ठ ४४

संबंधित प्रश्‍न

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×