हिंदी

Prove the Following Trigonometric Identities. Sin2 A Cot2 A + Cos2 A Tan2 A = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1

उत्तर

We have to prove `sin^2 A cot^2 A + cos^2 A tan^2 A = 1`

We know that `sin^2 A + cos^2 A = 1`

So,

`sin^2 A cot^2 A  + cos^2 A tan^2 A = sin^2 A (cos^2 A)/(sin^2 A) + cos^2  A(sin^2 A)/(cos^2 A)`

`= cos^2 A + sin^2 A`

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 22 | पृष्ठ ४४

संबंधित प्रश्न

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


Define an identity.


Write the value of cosec2 (90° − θ) − tan2 θ. 


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×