Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
उत्तर
We need to prove `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Now using cot theta = `1/tan theta` in the LHS we get
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = tan theta/(1 - 1/tan theta) + (1/tan theta)/(1 - tan theta)`
`= tan theta/(((tan theta - 1)/tan theta)) + 1/(tan theta(1 - tan theta))`
`= (tan theta)/(tan theta - 1)(tan theta) + 1/(tan theta(1 - tan theta)`
`= tan^2 theta/(tan theta - 1) - 1/(tan theta(tan theta - 1))`
`= (tan^3 theta - 1)/(tan theta(tan theta - 1))`
Further using the identity `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get
`(tan^3 theta - 1)/(tan(tan theta - 1)) = ((tan theta - 1)(tan^2 theta + tan theta + 1))/(tan theta (tan theta - 1))`
`= (tan^2 theta + tan theta + 1)/(tan theta)`
`= tan^2 theta/tan theta + tan theta/tan theta + 1/tan theta`
`= tan theta + 1 + cot theta`
Hence `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α