Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
उत्तर
`(cotA + cosecA - 1)/(cotA - cosecA + 1)`
= `(cotA + cosecA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` [`cosec^2A - cot^2A = 1`]
= `(cotA + cosecA - [(cosecA - cotA)(cosecA + cotA)])/(cotA - cosecA + 1)`
= `(cotA + cosecA[1 - cosecA + cotA])/(cotA - cosecA + 1)`
= `cotA + cosecA`
= `cosA/sinA + 1/sinA`
= `(1 + cosA)/sinA`
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`