हिंदी

Prove that: tanθsecθθθθθtanθsecθ – 1=tanθ+secθ+1tanθ+secθ-1 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

योग

उत्तर १

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

RHS = `(tanθ + secθ + 1)/(tanθ + secθ - 1)`

`"RHS" = (tanθ + secθ + 1)/((tanθ + secθ) - 1) × (tanθ + secθ + 1)/((tanθ + secθ) + 1)          ...("On rationalising the denominator")`

`"RHS" = ((tanθ + secθ + 1)^2)/((tanθ + secθ)^2 - 1)`

`"RHS" = (tan^2θ + sec^2θ + 1 + 2tanθsecθ + 2tanθ + 2secθ)/(tan^2θ + 2tanθ.secθ + sec^2θ - 1) ...{((a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc),((a + b)^2 = a^2 + 2ab + b^2):}`

`"RHS" = ((1 + tan^2θ) + sec^2θ + 2tanθsecθ + 2tanθ + 2secθ)/(tan^2θ + 2tanθ.secθ + (sec^2θ - 1))`

`"RHS" = (sec^2θ + sec^2θ + 2tanθsecθ + 2tanθ + 2secθ)/(tan^2θ + 2tanθ.secθ + tan^2θ)`

`"RHS" = (2sec^2θ + 2tanθsecθ + 2tanθ + 2secθ)/(2tan^2θ + 2tanθ.secθ)`

`"RHS" = [2secθ (tanθ + secθ) + 2(tanθ + secθ)]/[2tanθ(tanθ + secθ)]`

`"RHS" = [(2secθ + 2)(cancel(tanθ + secθ))]/[2tanθ(cancel(tanθ + secθ))]`

`"RHS" = [cancel2(secθ + 1)]/[cancel2(tanθ)]`

`"RHS" = (secθ + 1)/(tanθ)`

`"RHS" = (secθ + 1)/(tanθ) × (secθ - 1)/(secθ - 1)`

`"RHS" = (sec^2θ - 1)/(tanθ(secθ - 1))        ...[(a - b)(a + b) = a^2 - b^2]`

`"RHS" = (tan^cancel2θ)/(canceltanθ(secθ - 1))`

`"RHS" = tanθ/(secθ - 1)`

LHS = `"tanθ"/("secθ"  –  1)`

LHS = RHS

Hence proved.

shaalaa.com

उत्तर २

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

LHS = `"tanθ"/("secθ"  – 1)`

`"LHS" = "tanθ"/("secθ"  – 1) × ("secθ" + 1)/("secθ"+ 1)   ...("On rationalising the denominator")`  

`"LHS" = ("tanθ"("secθ" + 1))/("sec"^2θ" - 1)     ...[(a + b)(a - b) = a^2 - b^2]`

`"LHS" = ("tanθ"("secθ" + 1))/("tan"^2θ")          ...{(∵ 1 + tan^2θ = sec^2θ),(∵ sec^2θ - 1 = tan^2θ):}`

`"LHS" = ("secθ" + 1)/"tanθ"`

∴ `"tanθ"/("secθ"  –  1) = ("secθ" + 1)/"tanθ"`

∴ By theorem on equal ratios,

`"tanθ"/("secθ"  –  1) = ("secθ" + 1)/"tanθ" = (tanθ + (secθ + 1))/((tanθ) + secθ - 1)`

`"LHS" = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

`"RHS" = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

LHS = RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Practice Set 6.1 | Q 6.12 | पृष्ठ १३१

संबंधित प्रश्न

`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


Choose the correct alternative:

tan (90 – θ) = ?


If 1 – cos2θ = `1/4`, then θ = ?


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


If 2sin2β − cos2β = 2, then β is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×