हिंदी

Prove the following identities: sec4 A (1 – sin4 A) – 2 tan2 A = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1

योग

उत्तर

sec4 A (1 – sin4 A) – 2 tan2 A

= sec4 A – sec4 A sin4 A – 2 tan2 A

= `(sec^2A)^2 - 1/(cos^4A)sin^4A - 2tan^2A`

= (1 + tan2 A)2 – tan4 A – 2 tan2 A   ...`[(sec^2A - tan^2A = 1), (sec^2A = 1 + tan^2A)]`

= (1)2 + (tan2 A)2 – 2 × 1 × tan2 A – tan4 A – 2 tan2 A

= 1 + tan4 A + 2 tan2 A – tan4 A – 2 tan2 A

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Trigonometrical Identities - Exercise 21 (E) [पृष्ठ ३३२]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 21 Trigonometrical Identities
Exercise 21 (E) | Q 1.15 | पृष्ठ ३३२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×