Advertisements
Advertisements
प्रश्न
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
उत्तर
sec4 A (1 – sin4 A) – 2 tan2 A
= sec4 A – sec4 A sin4 A – 2 tan2 A
= `(sec^2A)^2 - 1/(cos^4A)sin^4A - 2tan^2A`
= (1 + tan2 A)2 – tan4 A – 2 tan2 A ...`[(sec^2A - tan^2A = 1), (sec^2A = 1 + tan^2A)]`
= (1)2 + (tan2 A)2 – 2 × 1 × tan2 A – tan4 A – 2 tan2 A
= 1 + tan4 A + 2 tan2 A – tan4 A – 2 tan2 A
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.