Advertisements
Advertisements
प्रश्न
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
उत्तर
`(1+ tan^2 theta ) cos^2 theta `
= `sec^2 theta xx 1/ sec^2 theta`
=1
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Find the value of ( sin2 33° + sin2 57°).
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`