Advertisements
Advertisements
प्रश्न
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
उत्तर
LHS = `cos^2 theta + 1/((1+cot^2 theta))`
=` cos^2 theta + 1/(cosec^2 theta)`
=` cos^2 theta + sin^2 theta`
=1
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If `sec theta = x ,"write the value of tan" theta`.
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If sec θ + tan θ = x, then sec θ =
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?