Advertisements
Advertisements
प्रश्न
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
उत्तर
LHS = cosecθ(1 + cosθ)(cosecθ - cotθ)
= `1/sinθ(1 + cosθ)(1/sinθ - cosθ/sinθ)`
= `((1 + cosθ))/sinθ ((1-cosθ)/sinθ)`
= `(1 - cos^2θ)/sin^2θ = sin^2θ/sin^2θ = 1 = RHS`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`