Advertisements
Advertisements
प्रश्न
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
उत्तर
LHS = `(sec θ - tan θ)/(sec θ + tan θ )`
= `(sec θ - tan θ)/(sec θ + tan θ ) xx (sec θ - tan θ)/(sec θ - tan θ )`
= `(sec θ - tan θ)^2/(sec^2θ - tan^2θ )`
= `(sec^2θ + tan^2θ - 2sec θ.tan θ )/1`
= 1 + 2 tan2θ - 2 sec θ. tan θ
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`