Advertisements
Advertisements
प्रश्न
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
उत्तर
LHS = sec2A + sec2B
= `1/(cos^2A) + 1/(cos^2 B)`
= `1/(cos^2A) + 1/(cos^2(90° - A))`
= `1/(cos^2 A) + 1/(sin^2 A)`
= `1/( sin^ A. cos^2 A)`
= sec2 A cosec2 A
= sec2 A cosec2 (90° - B)
= sec2A. sec2 B = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
(1 + sin A)(1 – sin A) is equal to ______.