Advertisements
Advertisements
प्रश्न
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
उत्तर
LHS = sec2A + sec2B
= `1/(cos^2A) + 1/(cos^2 B)`
= `1/(cos^2A) + 1/(cos^2(90° - A))`
= `1/(cos^2 A) + 1/(sin^2 A)`
= `1/( sin^ A. cos^2 A)`
= sec2 A cosec2 A
= sec2 A cosec2 (90° - B)
= sec2A. sec2 B = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If cos A + cos2A = 1, then sin2A + sin4 A = ?
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.