हिंदी

Prove the Following Trigonometric Identities. ((1 + Sin Theta - Cos Theta)/(1 + Sin Theta + Cos Theta))^2 = (1 - Cos Theta)/(1 + Cos Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`

उत्तर

 In the given question, we need to prove `((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`

Taking `sin theta` common from the numerator and the denominator of the L.H.S, we get

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2  = (((sin theta)(cosec theta + 1 -cot theta))/((sin theta)(cosec theta + 1 + cot theta)))^2`

`= ((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`

Now, using the property  `1 + cot^2 theta = cosec^2 theta` we get

`((1 + cosec theta -  cot theta)/(1 + cosec theta + cot theta))^2 = (((cosec^2 theta - cot^2 theta) +cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`

Using `a^2 - b^2 = (a + b)(a - b) we get

`(((cosec^2 theta - cot^2 theta)(cosec theta - cot theta))/(1 + cosec theta + cot theta))^2 = (((cosec theta - cot theta)(cosec theta + cot theta + 1))/(1 + cosec theta + cot theta))^2`

`= (cosec theta - cot theta)^2`

Using `cot theta = cos theta/sin theta` and `cosec = 1/sin theta` we get

`(cosec theta - cot theta)^2 = (1/sin theta - cos theta/sin theta)^2`

`= ((1 - cos theta)/sin theta)^2`

Now, using the property `sin^2 theta + cos^2 theta = 1` we get

`(1 - cos theta)^2/sin^2 theta = (1 - cos theta)/(1 - cos^2 theta)`

`= (1 - cos theta)^2/((1 + cos theta)(1 - cos theta))`

`= (1 - cos theta)/(1 + cos theta)`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 58 | पृष्ठ ४५

संबंधित प्रश्न

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`(1-cos^2theta) sec^2 theta = tan^2 theta`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Choose the correct alternative:

1 + cot2θ = ? 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×