Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
उत्तर
In the given question, we need to prove `((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Taking `sin theta` common from the numerator and the denominator of the L.H.S, we get
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (((sin theta)(cosec theta + 1 -cot theta))/((sin theta)(cosec theta + 1 + cot theta)))^2`
`= ((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`
Now, using the property `1 + cot^2 theta = cosec^2 theta` we get
`((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2 = (((cosec^2 theta - cot^2 theta) +cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`
Using `a^2 - b^2 = (a + b)(a - b) we get
`(((cosec^2 theta - cot^2 theta)(cosec theta - cot theta))/(1 + cosec theta + cot theta))^2 = (((cosec theta - cot theta)(cosec theta + cot theta + 1))/(1 + cosec theta + cot theta))^2`
`= (cosec theta - cot theta)^2`
Using `cot theta = cos theta/sin theta` and `cosec = 1/sin theta` we get
`(cosec theta - cot theta)^2 = (1/sin theta - cos theta/sin theta)^2`
`= ((1 - cos theta)/sin theta)^2`
Now, using the property `sin^2 theta + cos^2 theta = 1` we get
`(1 - cos theta)^2/sin^2 theta = (1 - cos theta)/(1 - cos^2 theta)`
`= (1 - cos theta)^2/((1 + cos theta)(1 - cos theta))`
`= (1 - cos theta)/(1 + cos theta)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Choose the correct alternative:
1 + cot2θ = ?