Advertisements
Advertisements
प्रश्न
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
उत्तर
L.H.S. = cosec A(1 + cos A) (cosecA – cot A)
= `1/(sin A)(1 + cos A)(1/(sin A) - (cos A)/(sin A))`
`((1-cos A)/sin A)`
`1/sin A(1+cos A)((1-cos A)/sin A)`
`= ((1+ cos A)(1-cos A))/sin^2 A`
Apply the identity (1 + cosA) (1 − cosA) = 1 − cos2A
`= (1-cos^2A)/sin^2A`
`= sin^2A/sin^2A = 1`
cscA(1 + cosA) (cscA − cotA) = 1 proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that sec2θ − cos2θ = tan2θ + sin2θ
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.