मराठी

Prove the Following Trigonometric Identities. ((1 + Sin Theta - Cos Theta)/(1 + Sin Theta + Cos Theta))^2 = (1 - Cos Theta)/(1 + Cos Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`

उत्तर

 In the given question, we need to prove `((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`

Taking `sin theta` common from the numerator and the denominator of the L.H.S, we get

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2  = (((sin theta)(cosec theta + 1 -cot theta))/((sin theta)(cosec theta + 1 + cot theta)))^2`

`= ((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`

Now, using the property  `1 + cot^2 theta = cosec^2 theta` we get

`((1 + cosec theta -  cot theta)/(1 + cosec theta + cot theta))^2 = (((cosec^2 theta - cot^2 theta) +cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`

Using `a^2 - b^2 = (a + b)(a - b) we get

`(((cosec^2 theta - cot^2 theta)(cosec theta - cot theta))/(1 + cosec theta + cot theta))^2 = (((cosec theta - cot theta)(cosec theta + cot theta + 1))/(1 + cosec theta + cot theta))^2`

`= (cosec theta - cot theta)^2`

Using `cot theta = cos theta/sin theta` and `cosec = 1/sin theta` we get

`(cosec theta - cot theta)^2 = (1/sin theta - cos theta/sin theta)^2`

`= ((1 - cos theta)/sin theta)^2`

Now, using the property `sin^2 theta + cos^2 theta = 1` we get

`(1 - cos theta)^2/sin^2 theta = (1 - cos theta)/(1 - cos^2 theta)`

`= (1 - cos theta)^2/((1 + cos theta)(1 - cos theta))`

`= (1 - cos theta)/(1 + cos theta)`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 58 | पृष्ठ ४५

संबंधित प्रश्‍न

Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


Choose the correct alternative:

1 + cot2θ = ? 


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×