Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
उत्तर
In the given question, we need to prove `((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Taking `sin theta` common from the numerator and the denominator of the L.H.S, we get
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (((sin theta)(cosec theta + 1 -cot theta))/((sin theta)(cosec theta + 1 + cot theta)))^2`
`= ((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`
Now, using the property `1 + cot^2 theta = cosec^2 theta` we get
`((1 + cosec theta - cot theta)/(1 + cosec theta + cot theta))^2 = (((cosec^2 theta - cot^2 theta) +cosec theta - cot theta)/(1 + cosec theta + cot theta))^2`
Using `a^2 - b^2 = (a + b)(a - b) we get
`(((cosec^2 theta - cot^2 theta)(cosec theta - cot theta))/(1 + cosec theta + cot theta))^2 = (((cosec theta - cot theta)(cosec theta + cot theta + 1))/(1 + cosec theta + cot theta))^2`
`= (cosec theta - cot theta)^2`
Using `cot theta = cos theta/sin theta` and `cosec = 1/sin theta` we get
`(cosec theta - cot theta)^2 = (1/sin theta - cos theta/sin theta)^2`
`= ((1 - cos theta)/sin theta)^2`
Now, using the property `sin^2 theta + cos^2 theta = 1` we get
`(1 - cos theta)^2/sin^2 theta = (1 - cos theta)/(1 - cos^2 theta)`
`= (1 - cos theta)^2/((1 + cos theta)(1 - cos theta))`
`= (1 - cos theta)/(1 + cos theta)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Choose the correct alternative:
1 + cot2θ = ?
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ