Advertisements
Advertisements
प्रश्न
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
उत्तर
Taking LHS
(cosec θ - sinθ )(secθ - cos θ ) ( tanθ +cot θ)
`(1/(sin theta )- sin theta )(1/(cos θ )- cosθ )((sin θ)/(cos θ) +(cos θ)/(sin θ))`
`=((1-sin^2 θ)/(sin θ)) ((1- cos ^2θ)/(cos θ)) ((sin^2 θ + cos^2 θ)/(sin θ . cos θ))`
`= (cos^2 θ)/( sin θ) xx (sin^2 θ)/(cos θ ) xx 1/(sinθ . cos θ )` = 1 = RHS
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.