Advertisements
Advertisements
प्रश्न
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ
उत्तर
LHS = (sin θ + cos θ)(cosec θ – sec θ)
= `(sin θ + cos θ)(1/sin θ - 1/cos θ)`
= `(sin θ + cos θ)((cos θ - sin θ)/(sin θ * cos θ))`
= `(cos^2θ - sin^2θ)/(sinθ * cosθ)`
= `(1 - 2sin^2θ)/(sinθ*cosθ)`
= `1/(sinθ * cosθ) - (2 sin^2θ)/(sinθ * cosθ)`
= cosec θ · sec θ – 2 tan θ
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)