Advertisements
Advertisements
प्रश्न
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
उत्तर
2 `(x^2 - 1/(x^2))`
=`4/2(x^2 - 1/(x^2))`
=`1/2(4x^2 - 4/(x^2))`
=`1/2 [(2x)^2- (2/x)^2]`
=`1/2 [( cosec theta )^2 - (cot theta)^2]`
=`1/2 (cosec ^2 theta - cot^2 theta)`
=`1/2 (1)`
=`1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
If x = a tan θ and y = b sec θ then
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.