Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
उत्तर
L.H.S. = `(secA - tanA)/(secA + tanA)`
= `(secA - tanA)/(secA + tanA) xx (secA - tanA)/(secA - tanA)`
= `(secA - tanA)^2/(sec^2A - tan^2A)`
= `(sec^2A + tan^2A - 2secAtanA)/1`
= 1 + tan2 A + tan2 A – 2 sec A tan A
= 1 – 2 sec A tan A + 2 tan2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Write the value of cos1° cos 2°........cos180° .
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
sec θ when expressed in term of cot θ, is equal to ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.