Advertisements
Advertisements
प्रश्न
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
उत्तर १
5`(x^2 - 1/(x^2))`
=`25/5 ( x^2 -1/(x^2))`
=`1/5 (25x^2 - 25/(x^2))`
=`1/5 [ (5x)^2 - (5/x)^2]`
=`1/5 [(sec theta )^2 - ( tan theta )^2 ]`
=`1/5 (sec^2 theta - tan^2 theta)`
=`1/5 (1)`
=`1/5`
उत्तर २
Given:
5x = sec θ, `5/x` = tan θ
⇒ sec θ = 5x, tan θ = `5/x`
We know that,
⇒ `(5x)^2 - (5/x)^2 = 1`
⇒ `25x^2 - 25/x^2 = 1`
⇒ `25 (x^2 - 1/x^2)=1`
⇒ `5 xx 5 xx (x^2 - 1/x^2)=1`
⇒ `5(x^2 - 1/x^2)`
⇒ `1/5`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
\[\frac{x^2 - 1}{2x}\] is equal to
The value of sin2 29° + sin2 61° is
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that cot2θ × sec2θ = cot2θ + 1
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.