मराठी

9 Sec2 a − 9 Tan2 a is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

9 sec2 A − 9 tan2 A is equal to

पर्याय

  • 1

  • 9

  • 8

  • 0

MCQ

उत्तर

Given:

`9 sec^2 A-9 tan^2 A`

`=9 (sec^2 A-tan^2 A)`

We know that, `sec^2 A-tan^2 A=1`

Therefore, `9 sec^2 A-9 tan^2 A=9`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 25 | पृष्ठ ५८

संबंधित प्रश्‍न

Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


(sec θ + tan θ) . (sec θ – tan θ) = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×