Advertisements
Advertisements
प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
उत्तर
L.H.S = `(sin theta)/(1 - cot theta) + (cos theta)/(1- tan theta)`
`= (sin theta)/(1 - cos theta/sin theta) + cos theta/(1 - sin theta/cos theta)`
`= sin^2 theta/(sin theta - cos theta) + cos^2 theta/(cos theta - sin theta)`
`= (sin^2 theta)/(sin theta - cos theta) - cos^2 theta/(sin theta - costheta)`
`= (sin^2 theta - cos^2 theta)/(sin theta - cos theta)`
`= ((sin theta - cos theta)(sin theta + cos theta))/(sin theta - cos theta)`
`= sin theta + cos theta`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1