Advertisements
Advertisements
प्रश्न
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
पर्याय
\[\pm \sqrt{a^2 + b^2 + c^2}\]
\[\pm \sqrt{a^2 + b^2 - c^2}\]
\[\pm \sqrt{c^2 - a^2 - b^2}\]
None of these
उत्तर
Given:
`a cosθ- b sinθ=c`
Squaring on both sides, we have
`(a cosθ-b sinθ ^2)=c^2`
`⇒ a^2 cos^2 θ+b^2 sin^2 θ-2. a cos θ. b sinθ=c^2`
``⇒a^2(1-sin ^2 θ)+b^2(1-cos^2θ)-2.a cosθ. b sin θ=c^2`
``⇒a^2-a^2 sin^2θ+b^2 cos^2 θ-2.acosθ. b sinθ=c^2`
``⇒-a^2 sin^2 θ-b^2 cos^2 θ-2 a cosθ. b sin θ=-a^2-b^2+c^2`
``⇒-(a^2 sin^2 θ+b^2 cos^2θ+2.a cosθ.b sin θ)=-(a^2+b^2-c^2)`
``⇒a^2 sin^2 θ+b^2 cos^2 θ+2.a sin θ.b cos θ=a^2+b^2-c^2`
``⇒(a sin θ+b cosθ)^2=a^2+b^2-c^2`
``⇒a sin θ+b cos θ=+- sqrt a^2+b^2-c^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`