Advertisements
Advertisements
Question
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Options
\[\pm \sqrt{a^2 + b^2 + c^2}\]
\[\pm \sqrt{a^2 + b^2 - c^2}\]
\[\pm \sqrt{c^2 - a^2 - b^2}\]
None of these
Solution
Given:
`a cosθ- b sinθ=c`
Squaring on both sides, we have
`(a cosθ-b sinθ ^2)=c^2`
`⇒ a^2 cos^2 θ+b^2 sin^2 θ-2. a cos θ. b sinθ=c^2`
``⇒a^2(1-sin ^2 θ)+b^2(1-cos^2θ)-2.a cosθ. b sin θ=c^2`
``⇒a^2-a^2 sin^2θ+b^2 cos^2 θ-2.acosθ. b sinθ=c^2`
``⇒-a^2 sin^2 θ-b^2 cos^2 θ-2 a cosθ. b sin θ=-a^2-b^2+c^2`
``⇒-(a^2 sin^2 θ+b^2 cos^2θ+2.a cosθ.b sin θ)=-(a^2+b^2-c^2)`
``⇒a^2 sin^2 θ+b^2 cos^2 θ+2.a sin θ.b cos θ=a^2+b^2-c^2`
``⇒(a sin θ+b cosθ)^2=a^2+b^2-c^2`
``⇒a sin θ+b cos θ=+- sqrt a^2+b^2-c^2`
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
(i)` (1-cos^2 theta )cosec^2theta = 1`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1