Advertisements
Advertisements
Question
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Solution
`(tan 65^circ)/(cot 25^circ)`
= `tan(90^circ - 25^circ)/cot 25^circ` (∵ `tan(90^circ - theta) = cot theta)`
= `cot 25^circ/cot 25^circ`
= 1
APPEARS IN
RELATED QUESTIONS
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`