English

Evaluate: Tan 65 ∘ Cot 25 ∘ - Mathematics

Advertisements
Advertisements

Question

Evaluate:

`(tan 65^circ)/(cot 25^circ)`

Sum

Solution

`(tan 65^circ)/(cot 25^circ)`

= `tan(90^circ - 25^circ)/cot 25^circ`  (∵ `tan(90^circ - theta) = cot theta)`

= `cot 25^circ/cot 25^circ`

= 1

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Abroad Set(2)

RELATED QUESTIONS

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×