Advertisements
Advertisements
Question
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Solution
L.H.S. = `sinA/(1 + cosA)`
= `sinA/(1 + cosA) xx (1 - cosA)/(1 - cosA)`
= `(sinA(1 - cosA))/(1 - cos^2A)`
= `(sinA(1 - cosA))/sin^2A`
= `(1 - cosA)/sinA`
= `1/sinA - cosA/sinA`
= cosec A – cot A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Simplify : 2 sin30 + 3 tan45.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A