Advertisements
Advertisements
Question
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Solution
We have to prove `(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Consider the expression
L.H.S
`(1 + tan^2 theta)/(1 + cot^2 theta) = (1 + tan^2 theta)/(1 + 1/(tan^2 theta))`
= `(1 +tan^2 theta)/((tan^2 theta + 1)/tan^2 theta)`
`= tan^2 theta (1 + tan^2 theta)/(1 + tan^2 theta)`
`= tan^2 theta`
= R.H.S
Again, we have
L.H.S
`((1 - tan theta)/(1 - cot theta))^2 = ((1 - tan theta)/(1 - 1/(tan theta)))^2`
`= ((1 - tan theta)/((tan theta - 1)/tan theta))^2`
`=[(tantheta(1-tantheta))/-(1-tantheta)]^2`
`=(-tantheta)^2=tan^2theta`
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
`(sec^2 theta-1) cot ^2 theta=1`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `secθ = 25/7 ` then find tanθ.
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If 1 – cos2θ = `1/4`, then θ = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If 2sin2β − cos2β = 2, then β is ______.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ