English

Prove the Following Trigonometric Identities (1 + Tan^2 Theta)/(1 + Cot^2 Theta) = ((1 - Tan Theta)/(1 - Cot Theta))^2 = Tan^2 Theta - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`

Sum

Solution

We have to prove `(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`

Consider the expression

L.H.S

`(1 + tan^2 theta)/(1 + cot^2 theta) = (1 + tan^2 theta)/(1 + 1/(tan^2 theta))`

= `(1 +tan^2 theta)/((tan^2 theta + 1)/tan^2 theta)`

`= tan^2 theta (1 + tan^2 theta)/(1 + tan^2 theta)`

`= tan^2 theta` 

= R.H.S

Again, we have 

L.H.S

`((1 - tan theta)/(1 - cot theta))^2 = ((1 - tan theta)/(1 - 1/(tan theta)))^2`

`= ((1 - tan theta)/((tan theta - 1)/tan theta))^2`

`=[(tantheta(1-tantheta))/-(1-tantheta)]^2`

`=(-tantheta)^2=tan^2theta`

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 28 | Page 44

RELATED QUESTIONS

Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


`(sec^2 theta-1) cot ^2 theta=1`


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


If `secθ = 25/7 ` then find tanθ.


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If 1 – cos2θ = `1/4`, then θ = ?


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


If 2sin2β − cos2β = 2, then β is ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×