English

The Value of √ 1 + Cos θ 1 − Cos θ - Mathematics

Advertisements
Advertisements

Question

The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]

Options

  •  cot θ − cosec θ

  •  cosec θ + cot θ

  • cosec2 θ + cot2 θ

  •  (cot θ + cosec θ)2

MCQ

Solution

The given expression is `sqrt ((1+cosθ)/(1-cos θ))` 

Multiplying both the numerator and denominator under the root by` (1+cosθ )`, we have

`sqrt (((1+cosθ)(1+cosθ))/((1+cosθ)(1-cos θ)))` 

`=sqrt ((1+cosθ)^2/ ((1-cos^2 θ))` 

`=sqrt((1+cos θ)^2/sin^2θ` 

`=(1+cos θ)/(sinθ)` 
= `1/sinθ+cosθ/sinθ`

= `cosecθ+cotθ`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.4 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 4 | Page 56

RELATED QUESTIONS

Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×