Advertisements
Advertisements
प्रश्न
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
विकल्प
cot θ − cosec θ
cosec θ + cot θ
cosec2 θ + cot2 θ
(cot θ + cosec θ)2
उत्तर
The given expression is `sqrt ((1+cosθ)/(1-cos θ))`
Multiplying both the numerator and denominator under the root by` (1+cosθ )`, we have
`sqrt (((1+cosθ)(1+cosθ))/((1+cosθ)(1-cos θ)))`
`=sqrt ((1+cosθ)^2/ ((1-cos^2 θ))`
`=sqrt((1+cos θ)^2/sin^2θ`
`=(1+cos θ)/(sinθ)`
= `1/sinθ+cosθ/sinθ`
= `cosecθ+cotθ`
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If tanθ `= 3/4` then find the value of secθ.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If sec θ = `25/7`, then find the value of tan θ.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
sin(45° + θ) – cos(45° – θ) is equal to ______.