हिंदी

The Value of √ 1 + Cos θ 1 − Cos θ - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]

विकल्प

  •  cot θ − cosec θ

  •  cosec θ + cot θ

  • cosec2 θ + cot2 θ

  •  (cot θ + cosec θ)2

MCQ

उत्तर

The given expression is `sqrt ((1+cosθ)/(1-cos θ))` 

Multiplying both the numerator and denominator under the root by` (1+cosθ )`, we have

`sqrt (((1+cosθ)(1+cosθ))/((1+cosθ)(1-cos θ)))` 

`=sqrt ((1+cosθ)^2/ ((1-cos^2 θ))` 

`=sqrt((1+cos θ)^2/sin^2θ` 

`=(1+cos θ)/(sinθ)` 
= `1/sinθ+cosθ/sinθ`

= `cosecθ+cotθ`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 4 | पृष्ठ ५६

संबंधित प्रश्न

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


If tanθ `= 3/4` then find the value of secθ.


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


Write the value of sin A cos (90° − A) + cos A sin (90° − A).


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


If sec θ = `25/7`, then find the value of tan θ.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


sin(45° + θ) – cos(45° – θ) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×