Advertisements
Advertisements
प्रश्न
sec4 A − sec2 A is equal to
विकल्प
tan2 A − tan4 A
tan4 A − tan2 A
tan4 A + tan2 A
tan2 A + tan4 A
उत्तर
The given expression is .`sec^4 A-sec^2A`
Taking common `sec^2 A` from both the terms, we have
`Sec^4 A-sec^2 A`
= `sec^2 A (sec^2 A-1)`
= `(1+tan^2 A)tan^2 A`
=`tan^2 A+tan^4 A`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If `sec theta = x ,"write the value of tan" theta`.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If sec θ + tan θ = x, then sec θ =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.