Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
उत्तर
LHS = `cosA/(1 + sinA)`
RHS = secA - tanA
= `1/cosA - sinA/cosA = (1 - sinA)/cosA`
= `(1 - sinA)/cosA((1 + sinA)/(1 + sinA)) = ((1 - sin^2A)/(cosA(1 + sinA)))`
= `cos^2A/(cosA(1 + sinA)) = cosA/((1 + sinA) ` = LHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
If cosθ = `5/13`, then find sinθ.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`