Advertisements
Advertisements
प्रश्न
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
उत्तर
LHS = `sqrt((1+sin theta)/(1-sin theta))`
=`sqrt(((1+ sin theta))/(1- sin theta) xx ((1+sin theta))/(1+ sin theta))`
=` sqrt(((1+sin theta)^2)/(1-sin^2 theta))`
=`sqrt(((1+ sin theta)^2)/(cos^2 theta))`
=`(1+sin theta)/cos theta`
=`1/cos theta+ (sin theta)/(cos theta)`
= (sec 𝜃 + tan 𝜃)
= RHS
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
\[\frac{x^2 - 1}{2x}\] is equal to
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If cosA + cos2A = 1, then sin2A + sin4A = 1.