हिंदी

If X = a Cos θ and Y = B Sin θ, Then B2x2 + A2y2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =

विकल्प

  • a2 b2

  • ab

  • a4 b4

  • a2 + b2

MCQ

उत्तर

Given: 

`x= a cosθ, y= b sin θ` 

So,

`b^2 x^2+a^2 y^2` 

= `b^2(a cos)^2+a^2(b sin θ)^2` 

=` b^2 a^2 cos^2θ+a^2 b^2 sin^2θ`

=`b^2a^2 (cos^2 θ+sin^2θ)` 

We know that,

`sin^2θ+cos^2θ=1`

Therefore,` b^2x^2+a^2y^2=a^2b^2` 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 12 | पृष्ठ ५७

संबंधित प्रश्न

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


cosec4θ − cosec2θ = cot4θ + cot2θ


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


If cosθ = `5/13`, then find sinθ. 


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×