Advertisements
Advertisements
Question
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Options
a2 b2
ab
a4 b4
a2 + b2
Solution
Given:
`x= a cosθ, y= b sin θ`
So,
`b^2 x^2+a^2 y^2`
= `b^2(a cos)^2+a^2(b sin θ)^2`
=` b^2 a^2 cos^2θ+a^2 b^2 sin^2θ`
=`b^2a^2 (cos^2 θ+sin^2θ)`
We know that,
`sin^2θ+cos^2θ=1`
Therefore,` b^2x^2+a^2y^2=a^2b^2`
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Define an identity.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
If sec θ = `25/7`, then find the value of tan θ.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
sin(45° + θ) – cos(45° – θ) is equal to ______.